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a b s t r a c t

Human computation systems harness the cognitive power of a crowd of humans to solve computational
tasks for which there are so far no satisfactory fully automated solutions. To obtain quality in the results,
the system usually puts into practice a task replication strategy, i.e. the same task is executed multiple
times by different humans. In this study we investigate how to improve task replication considering
information about the credibility score of participants. We focus on how to automatically measure the
credibility of participantswhile they execute tasks in the system, and how such credibility assessment can
be used to define, at execution time, the suitable degree of replication for each task. Based on a conceptual
framework, we propose (i) four alternative metrics to measure the credibility of participants according
to the degree of agreement among them; and (ii) an adaptive credibility-based task replication algorithm
that defines, at execution time, the degree of replication for each task.We evaluate the proposed algorithm
in a diversity of configurations using data of thousands of tasks and hundreds of participants collected
from two real human computation projects. Results show that the algorithm is effective in optimising
the degree of replication, without compromising the accuracy of the obtained answers. In doing so, it
improves the ability of the system to properly use the cognitive power provided by participants.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Human computation is an emerging computing approach that
draws upon human cognitive abilities to solve computational tasks
for which there are still no satisfactory fully automated solu-
tions [1–3]. Systems based on human computation are distributed
systems that harness the cognitive power of a crowd of humans
connected to the Internet to execute relatively simple tasks, whose
solutions, once grouped, solve a problem that distributed systems
equippedwith onlymachines cannot solve satisfactorily. Such type
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of system has been proved to be effective in solving tasks that rely
on human cognition such as detecting information in images [4],
and processing natural language content [5], as well as more sub-
jective tasks related to human’s opinions and preferences [6].

There are currently two main types of human computation
systems: online labour markets and crowdsourced citizen science
projects. Online labour markets gather a crowd of humans will-
ing to perform tasks in exchange for a relatively low financial
incentive [7–9] — e.g. Amazon Mechanical Turk (mturk.com) and
CrowdFlower (crowdflower.com). Crowdsourced citizen science
projects, in turn, consist in a partnership between scientists and
a crowd of humans willing to contribute to a scientific research,
without receiving any financial incentive [10–12]. People acting in
a citizen science project may contribute in a number of activities,
which include performing human computation tasks. Examples of
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citizen science projects based on human computation are Star-
dust@home (stardustathome.ssl.berkeley.edu), in which people
search for tiny interstellar dust impacts in images, and Galaxy Zoo
(galaxyzoo.org), in which people perform morphological classifi-
cation of galaxies from images.

To ensure quality in the execution of tasks, human computation
systems usually require that the same task is executed multiple
times by different humans; then, different aggregation mecha-
nisms, which leverage the diversity and redundancy of multiple
answers, can be employed to generate a more reliable answer
to the task. In many systems, a task replication strategy is used
as a way to obtain redundancy of answers in order to identify
consensus in the set of answers or to tolerate faults that may
cause some humans to generate wrong answers [11,13,3,14]. The
degree of replication is the number of different humans who are
performing each task. It is usually defined by the users at the
moment of submitting a group of related tasks, all of them having
the same degree of replication. Defining the suitable degree of
replication for a task is a challenging process because it generates
a trade-off between quality and cost. If the degree of replication
is overestimated, an excessive amount of humans is used and,
therefore, there is an increase in the cost of executing all tasks,
perceived either financially or as a waste of resources that could
have been allocated to do something else. On the other hand, if
the degree of replication is underestimated, the desired quality
in each answer is not achieved. Because tasks may differ among
themselves in several ways, including its difficulty, it is expected
that the ideal degree of replication can be different from one
task to another, even when the description of the tasks are very
similar. Given that users typically submit groups of hundreds or
thousands of tasks, it is prohibitive to definemanually a replication
degree for each task addressing the cost–benefit trade-off. This is a
typical situation in large citizen science projects based on human
computation, as those hosted at the Zooniverse (zooniverse.org)
and the Crowdcrafting (crowdcrafting.org) platforms.

This study analyses how to automatically improve task replication
at execution time by considering participants’ credibility scores and
the difficulty of tasks. It focuses on (i) how to automaticallymeasure
the difficulty of tasks and the credibility of participants while they
execute the tasks in the system, and (ii) how suchmeasures can be
used to define, at execution time, the suitable degree of replication
for each task. To this end, we go through existing studies on human
computation, credibility assessment, and task replication. Based on
them,we propose four alternativemetrics tomeasure participants’
credibility considering the agreement among themselves. These
metrics cover a diversity of participants’ features, such as: the
amount of generated answers; the amount of agreement with
other participants that could be expected to occur through chance
alone; and groups of participants that usually generate the most
frequent answers. Then, we propose an adaptive task replication
algorithm that optimises the degree of replication for each task,
taking into account the participants’ credibility and the difficulty
of the task. The main idea is to stop replication as soon as the
algorithm obtains a group of answers that is credible enough.
Naturally, there are tasks in which the divergence in the answers
is so high that a credible answer is not obtained even by increasing
replication. The algorithm is designed to detect these situations,
and stop replicating the task when a maximum degree of replica-
tion is reached.

Our evaluation study is based on trace-driven simulations [15].
The simulations are guided by data sets collected from two real
human computation projects: Sentiment Analysis, and Fact Evalu-
ation. Such data sets comprise hundreds of participants performing
thousands of tasks, being valuable sources to analyse the per-
formance of the proposed replication algorithm. In the simula-
tions we evaluate 160 different configurations of the proposed

algorithm and also two comparative strategies: (i) an oracle that
knows whether an answer provided by a human is correct or not,
and stops replicating the task when a correct answer is obtained;
and (ii) a majority voting strategy that collects answers from a
fixed number of participants, and identifies as correct the answer
provided by themajority of them.We evaluate both the accuracy of
answers and the replication reduction reached by these strategies.

The results show that the proposed credibility-based task repli-
cation algorithm is effective in achieving replication reduction
while meeting other quality of service requirements, such as the
required credibility. Some configurations of the algorithm reach
higher accuracy than majority voting and achieves a replication
reduction comparable with that attained by the oracle. In doing so,
it improves the ability of the system to properly use the cognitive
power provided by participants, while allows users to address the
trade-off between different quality-of-service requirements.

The main contributions of this study are:

• we integrate concepts from four distinct literatures, which
are human computation, credibility assessment, inter-rater
agreement, and replication of tasks;
• we propose four alternative metrics to automatically mea-

sure the credibility of participants while they execute hu-
man computation tasks in a system, which are: surface
agreement, experienced agreement, weighted agreement,
and reputed agreement;
• we propose an adaptive task replication algorithm that op-

timises the degree of replication of each task according to
participants’ credibility, task difficulty and quality of service
requirements.

These contributions have implications for human computation
and related areas that are based on performing tasks with the
participation of people, such as the areas of citizen science, crowd-
sourcing, and social computing. They also have implications for
the area of distributed systems. Human computation systems are
distributed systems in which computational resources are human
beings. As such, some of the concepts employed in traditional
distributed systems — i.e. those in which computational resources
aremachines — to replicate tasks can also be employed to replicate
tasks in human computation systems. The study highlights this
point, but also puts into perspective new issues in task replication
that arise only in human computation systems.

The remainder of this paper is organised as follows. Firstly,
we provide background on human computation, credibility assess-
ment, task replication, and also discuss relevant previous work.
Next, we present our approach to use agreement-based metrics
to assess credibility and replicate tasks in human computation
systems. Finally, we evaluate the proposed approach using data
from two human computation projects, and then discuss the im-
plications and limitations of the study.

2. Background and related work

Now we turn to present the terminology we adopt throughout
the paper by briefly reviewing relevant notions of human compu-
tation, credibility assessment, and task replication. Thereafter, we
discuss the related work.

2.1. Background

Human computation. Systems based on human computation are
distributed systems inwhich humans participate as computational
elements [16,2,3,17]. There are three core entities in this sort of
system: requesters, workers, and platforms. Requesters are users
who act in the system by submitting human computation tasks to
be performed. A human computation task (or human intelligence

http://stardustathome.ssl.berkeley.edu
http://www.galaxyzoo.org
http://www.zooniverse.org
http://crowdcrafting.org


L. Ponciano, F. Brasileiro / Future Generation Computer Systems 87 (2018) 159–170 161

task, HIT) consists of some input data and a set of instructions
about what to dowith the data to produce a solution for the task. A
human computation application comprises a group of tasks; each
of them can be performed by one human. If the application is
composed of a group of independent tasks, it is called a project or a
bag of tasks. Otherwise, if composed of a group of tasks organised
in a sequence of connected steps, it is called a workflow. Workers1
are participants who act in the system as human computers by
executing the human computation tasks. The solution provided
by a worker to a task is called an answer.2 Workers usually
perform tasks independently, i.e. they do not knowwhich tasks are
being performed by others and which answers are being provided.
Finally, platforms are systems that act as a middleware receiving
requesters’ tasks and managing their execution by the workers.

Human computation tasks can be classified according to their
granularity and subjectivity. In terms of granularity, tasks can be
broadly classified into micro-tasks and macro-tasks. Micro-tasks
consist of few instructions that require little time to perform,
such as a few minutes. Macro-tasks, in turn, consist of several
instructions that require a long time to perform, such as hours
or days. Tasks can also be classified into factual or non-factual
according to the degree of subjectivity of their instructions. Tasks
are non-factual when their instructions contain many aspects of
subjectivity, such as opinion, feeling and creativity. For example,
a task that displays two sunset images and asks the worker to
choose the image that depicts the most beautiful sunset is defined
as non-factual. The answers generated by workers in this kind of
task are defined neither correct nor incorrect. On the other hand,
in factual tasks, the instructions are more precise and the answers
can be evaluated in terms of correctness by a human expert. For
example, a task that displays an image of a landscape and asks
workers whether there is a tree in the landscape depicted in the
image is defined as factual.

Human computation tasks can also differ among themselves by
complexity and difficulty. Although there are similarities between
these concepts, they are neither independent nor equivalent [19].
Complexity can be defined as the amount of cognitive effort the task
demands. Difficulty, in turn, is an attribute of both task and human
(or group of humans) who is (are) performing the task. It includes
human factors such as familiarity with the instructions, amount
of knowledge and past experience. Thus, while the complexity of
a task is similar to all humans who perform it, the perception of
difficulty may vary from one human to another. Moreover, the
complexity of a task is constant, while the perceived difficulty of
a task by a particular worker can decrease or even increase when
evaluated at different time instants [20].

Credibility assessment. Conceptual frameworks have been pro-
posed to define the concept of credibility, to understand the el-
ements related to this concept in computational systems, and
to support its study in a multidisciplinary perspective [21–23].
Credibility means ‘‘believability’’ and it is mainly associated with
the notions of trustworthiness and expertise [21]. Credibility is also
associated to the concepts of reputation and relevance [22]. From
this point of view, a high credible person in a specific domain of
knowledge is someone known for having high expertise in such
domain, and being able to be trusted. So, users can rely on what
such person says. This concept may be helpful to identify good
workers in human computation platforms. The components of a
system that are subject to credibility assessment are the pieces of
information referred to asmessages, the sources that produces such

1 Workers are called providers, crowdworkers or turkers in studies focused on
online labour markets [2,3]. They are also called volunteers or citizen scientists in
studies on crowdsourced citizen science and scientific crowdsourcing [18].
2 Answers are also referred in the literature as results, outcomes, outputs, or

responses.

messages, and the medium in which the messages are transmitted
or delivered [23]. These concepts can be used to analyse credibility
in human computation systems. In this sort of system, the mes-
sages are the answers to the tasks, the sources are the workers
who produce such answers, and the medium is the platform in
which the tasks are performed, and that delivers answers to the
requesters.

The assessment of credibility consists of prominence and inter-
pretation [23]. Prominence focuses on making relevant elements
noticeable. If an element is not noticed, it will not have an impact
on the credibility. Interpretation, in turn, is the judgement about
each noticed element. The interpretation of each element deter-
mines how it impacts the credibility of the subject under evalua-
tion. Four types of assessments can contribute to the prominence:
presumed, reputed, surface, and experienced [21,23]. Presumed
assessment is based on general assumptions that the evaluator
has on his/her mind about the subject under evaluation. Reputed
assessment is based on what third parties have reported about the
subject under evaluation. Surface assessment defines the credibil-
ity of the subject based only on a simple inspection of some of
its elements. Finally, experienced assessment is based on first-hand
experience with the subject under evaluation.

We draw on these types of assessment to derive metrics to
perform the prominence and interpretation of workers’ credibility.
The proposed credibility metrics are based on the level of agree-
ment between workers when performing the tasks. The concept of
‘‘agreement among humans’’ has been covered in the literature on
the subject of inter-rater agreement (or inter-rater reliability) [24–
26]. It focuses on how much consensus there is in the answers
given by humans. High consensus among the workers does not
guarantee high accuracy in the answer to the task, but certainly
there is no high accuracy if the agreement is low [25]. Considering
this literature, we determine the credibility of a worker based on
his/her level of agreement with other workers in each individual
task.

Task replication. Replication is a mechanism used when it is im-
portant to obtain some kind of redundancy. It may consist of
storing the same data on multiple storage devices or executing
the same instructions many times. Such kind of redundancy is
important in both human-based and machine-based systems. For
instance, redundancy is a fundamental building block to achieve
high availability/performance or to tolerate faults in distributed
systems [27,28]. In social choice and inter-human agreement con-
texts, redundancy of answers from different humans is used to
elicit preferences, opinions, and collective choices [24,25]. The
following concepts coined in those areas are relevant to the present
work: active replication, passive replication, degree of replication,
and aggregation.

Active and passive replication are concepts used in distributed
systems [27]. In active replication, each replica of a task is fully
executed by different computing elements, with each non-faulty
element starting from the same initial state and getting to the
same final state of the task. In passive replication, while the task
is executed in one primary computing element, a backup of the
state of the execution is maintained in other secondary computing
elements. This backup keeps the computations already performed
and can be restored if a failure occurs during execution. In hu-
man computation, the concept of passive replication is possible in
macro-tasks in which workers generate a sequence of answers to
the same task. In such cases may be important to keep copies of
partial answers. The present study focuses on micro-tasks and on
active replication. Thus, the same task is fully executed multiple
times by different workers in order to obtain redundancy of an-
swers. Such redundancy is used to identify consensus in the set of
answers and to tolerate faults thatmay cause somehuman failures,
e.g. lapses, slips, and mistakes [20].
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As we discussed earlier, the degree of replication is the number
of times the task is replicated to different workers. Identifying the
appropriate degree of replication is a challenging process because
of its inherent cost–benefit trade-off. When different replicas of a
task produce different answers, a strategy of aggregation of answers
is used to identify the final answer to the task. Thus, the strategy
of aggregation defines which answer should be used. An example
of strategy is to consider correct the most frequent answer. The
degree of replication can have effects on the quality of the answer
obtained in the aggregation. The present study investigates the
role that credibility metrics play in both defining the degree of
replication and performing the aggregation of answers in human
computation tasks.

2.2. Related work

To the best of our knowledge, no previous studies have ex-
amined the credibility assessment and task replication framework
in the context of human computation systems. However, we can
identify some related work in the context of quality assurance,
aggregation of answers, and task redundancy.

Quality assurance. Workers may not properly perform tasks for
several reasons [29], such as: (i) cheating behaviour, (ii) lack of
ability and expertise, and (iii) problems in the definition of the
task. A cheating behaviour occurs, for example, when workers put
little effort to perform the task, or provide wrong answers to tasks
intentionally. It may occur in online labour markets in which some
workers are only interested in receiving the money regardless
whether the task is being properly performed or not [2,30]. Work-
ers can also actively react to actions from the requester, such as
planning collusion against requesters who have submitted poorly
designed tasks [31].When analysing the answers received from the
system, it is important to be careful in judging the workers; they
usually complain about being unfairly labelled as bots, spammers,
cheaters, etc. [32]. We highlight that the occurrence of cheating
workers is found to be negligible in citizen science projects [11].

The main causes of errors in answers to human computation
tasks are problems on the task design and workers’ lack of abil-
ity/expertise [33,34]. Problems on the design of task, e.g. ambigu-
ous instructions and cognitive overload, are usually addressed by
following platform guidelines and conducting pilot tests. The way
requesters deal with lack of ability/expertise of workers varies if
the task is factual or non-factual. In factual tasks, the assessment
of the expertise of workers is usually made by using pre-task qual-
ification tests, gold standard data sets, and workers’ behavioural
measures [13,35,29]. In non-factual tasks, in turn, there is no
unique answer, so workers are not evaluated in terms of expertise,
therefore, those strategies do not apply. In this case, post-task
quality assurance strategies based on redundancy and aggregation
are widely used [25,29].

Aggregation of answers. Aggregation focuses only on getting ac-
curate or relevant answers to the tasks. It has been used as an
offline procedure, performed after all answers have been collected
from the system [16,36,37]. Several strategies for aggregation of
answers have been proposed in the last few years; a number of
them are reviewed by previous studies [16,36,38]. Many strategies
are based mainly on detecting agreement or consensus by using,
for example, an expectation–maximisation (EM) algorithm. How-
ever, the simplest and most used strategy is majority voting [36].
Previous studies on output aggregation fall short in investigating
how credibility metrics (inferred from the dynamics of workers in
the system) can be considered by an aggregation strategy, and how
they can help one to optimise the system effectiveness, not only
in terms of accuracy of answers, but also in terms of performance
requirements, such as the number of replicas, and the urgency to
obtain a final answer. The present study investigates these issues
and examines how the aggregation can be performed, online, as
part of the task replication process.

Task redundancy. If the proportion of workers who generate
wrong answers is known, one can define the redundancy per
task before submitting the tasks to the system [39]. However,
workers perception of difficulty, and their probability of providing
wrong answers, can greatly vary, both with the characteristics of
tasks (e.g. instruction and input data), as well as with workers’
characteristics (e.g. familiarity and experience), making it hard
to estimate, beforehand, the proportion of workers who provide
wrong answers. Some studies have sought to identify the number
of workers who must perform a task, so that accurate answers
are obtained. For example, in the first release of the Galaxy Zoo
project, each task was executed on average 38 times [11], and a
recent study suggests that each task should be replicated 10 to
11 times in Amazon Mechanical Turk [14]. However, pre-establish
an equal degree of replication for tasks that may have differences
in terms of difficulty may not be effective. Tasks that are more
difficult tend to leadworkers to disagreemore on the answers they
provide [40,41], and require more replicas to reach a suitable level
of accuracy. The present study proposes a strategy to adaptively
define, at execution time, the degree of replication, according to
estimates of the difficulty of tasks and workers’ credibility.

Studies have highlighted several performance requirements
that are important to requesters, such as time, cost, accuracy, re-
producibility, and security [2,8,3]. By reducing the number of repli-
cas that are generated, and taking into accountworkers’ credibility,
a replication algorithmmay reduce costs and increase the accuracy
of the answers obtained from the systems. However, it can also
introduce some delays in the execution of tasks. For example, tasks
can take longer to execute depending on whether their replicas
are generated sequentially or in parallel. If the user has a time
requirement, generating replicas sequentially may be a drawback.
To cope with this issue, the replication algorithm proposed in this
paper allows users to inform the level of urgency to get a final
answer. It is designed so that the higher the urgency, the higher the
parallelism in the execution, but the lower the chance to reduce the
number of replicas used.

In general, these previous studies clarify several aspects of
workers’ behaviour, quality assurance, and aggregation of answers
in human computation systems. However, little progress has been
made in terms of understanding how to estimate the credibility of
workers and to optimise the replication of tasks. This fact consti-
tutes an important shortcoming because a key feature of this kind
of system is its capacity to deal with the difference of performance
among the workers and to optimise the use that the systemmakes
of the cognitive power provided by them. The present study shows
that agreement-based credibility metrics provide us with a clear
understanding of workers proficiency and a credibility-aware task
replication is effective in optimising the performance of these
systems.

Our initial studies have analysed the potential of optimising
the redundancy of tasks according to the worker’s credibility [42],
and mapping the concept of task replication onto the context of
human computation system [43]. Besides integrating the notion of
credibility assessment and task replication in human computation
system, the present paper presents our approach to use credibility
metrics to improve task replication. We propose (i) a set of four
alternativemetrics tomeasure the credibility of workers in human
computation, and (ii) a task replication strategy that optimises
the degree of replication according to workers’ credibility score
and taking into account requesters’ requirements, such as required
credibility, urgency and maximum number of replicas allowed.

3. Agreement-based credibility assessment and task replica-
tion

Our approach consists of three major components: (i) measur-
ing the worker’s credibility considering the difficulty of tasks; (ii)
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measuring the credibility of each answer and groups of answers;
and (iii) replicating tasks according to the value of credibility
metrics. Now we turn to discuss each of these components.

3.1. Measuring the credibility of workers

We establish four alternative metrics for automatically mea-
suring the credibility of workers. Each metric covers a different
way of assessing credibility: surface, experienced, presumed and
reputed. We consider that the credibility of workers varies with
the degree of difficulty of the task. The degree of difficulty of each
task is measured by using Shannon’s entropy [44]. This entropy
measures the degree of divergence among the answers to the task
providedbydistinctworkers. The idea behind thismetric is that the
greater such divergence, themore difficult the task is. The difficulty
degree is denoted by d and defined by Eq. (1). In this equation, S
denotes the set of unique answers to the task, each a ∈ S denotes
one distinct answer, and Pr(a) denotes the proportion of workers
whoprovided the answer a.When all theworkers provide the same
answer to the task, the difficulty degree assumes the minimum
value (d = 0). The value of d is impacted by both the diversity
of answers received to the task and the distribution of workers
in these answers. In order to categorise the tasks according to
their degree of difficulty, we enumerate the possible values of d by
rounding them to one decimal place d = 0.0, 0.1, 0.2, . . . . Using
such categorisation, we estimate a value of worker’s credibility for
each degree of difficulty of tasks.

d = −
∑
a∈S

(
Pr(a)× log2 Pr(a)

)
. (1)

Surface agreement. This credibility metric is the probability of a
worker to provide an answer equal to the answer provided by the
majority of workers who performed the task. Let ni,d be the total
number of tasks with degree of difficulty d performed by a worker
i, and let fi,d be the amount of those tasks in which the worker i
provided the same answer provided by the majority of workers
who performed the task. The joint probability of agreement of
answers provided by the worker i and answers provided by the
majority of workers is computed as defined by Eq. (2). When si,d =
1, there is a complete agreement between the answer provided by
worker i and the answer provided by the majority in all the tasks
performed byworker i. On the contrary, the closer si,d gets to 0, the
lower the agreement between worker i and the majority.

si,d =
fi,d
ni,d

, si,d ∈ [0, 1]. (2)

Experienced agreement. This credibility metric is based on Cohen’s
kappa statistic [24]. It has been used to measure the agreement
between the answers provided by two people. Here, we use this
metric to measure the degree of agreement between the answers
provided by a worker and the answers provided by the majority
of workers to the same tasks. Unlike surface credibility, experi-
enced credibility takes into account not only the amount of joint
probability of agreement (si,d), but also the amount of agreement
that could be expected to occur through chance alone (ci,d), i.e. the
probability ofworkers to agree giving randomanswers to the tasks.
The experienced agreement is denoted by ei,d and formalised in
Eq. (3). To keep the values in the range between0 and1, as occurs in
the othermetrics,weuse the value (ei,d+1)/2.When the result is 1,
there is a complete agreement between worker i and the majority.
If it is higher than or equal to 0.5, the agreement is higher than
or equal to the chance-expected agreement. Finally, a value lower
than 0.5 indicates that the measured agreement is lower than the
chance-expected agreement.

ei,d =
si,d − ci,d
1− ci,d

, ei,d ∈ [−1, 1]. (3)

Weighted agreement. People usually assume that the more infor-
mation is used to estimate the credibility, the more likely the esti-
mation is accurate. For example, the estimation of credibility based
on only one answer provided by a worker seems to be less reliable
than the estimation of credibility based on 10 answers provided
by that worker. We propose a presumed credibility metric that
reflects this idea. It is denoted by pi,d and defined in Eq. (4). This
metric is a weighted harmonic mean between the joint probability
of agreement (si,d) and the neutral credibility of 0.5. The weight
of si,d is the number of tasks performed by the worker (ni,d) and
the weight of 0.5 is 1. It means that the larger the number of
tasks performed by the worker (ni,d), the greater the weight of
the estimated probability of agreement in the credibility of the
worker. Thus, when ni,d = 0, the weighted agreement pi,d is 0.5,
which indicates neutral credibility. In the proportion with which
the number of tasks performed by the worker (ni,d) increases, the
value of weighted agreement of the worker tends to si,d.

pi,d =
ni,d + 1
ni,d
si,d
+

1
0.5

, pi,d ∈ [0, 1]. (4)

Reputed agreement. The idea behind this credibility metric is that
the credibility of a worker should be increasedwhen he/she agrees
with highly credible workers, and should be decreased when
he/she disagreeswith highly credibleworkers. Thus, the purpose of
our reputed credibility is to consider in the credibility of a worker
i the scores of credibility of the other workers with whom he/she
agreed and disagreed in the past. Let Yi,d be the set of workers with
whom i agreed when he/she provided the majority answer. We
define yi,d as the averaged credibility of this set of workers; it is
computed by using Eq. (5). Let Xi,d be the set ofworkerswithwhom
i disagreed when he/she did not provide the majority answer. We
define xi,d as the averaged credibility of this set of workers; it is
computed by using Eq. (6). Once defined yi,d and xi,d, we can now
compute the reputed agreement of worker i by using Eq. (7).

yi,d =

∑
w∈Yi,d

sw,d

|Yi,d|
(5)

xi,d =

∑
w∈Xi,d

sw,d

|Xi,d|
(6)

ri,d =
si,d + yi,d − xi,d + 1

3
, ri,d ∈ [0, 1]. (7)

The credibility ri,d assumes the minimum value 0 when the
following conditions are satisfied: (i) the worker i disagreed with
the majority in all the tasks he/she performed (i.e. si,d = 0), (ii)
as the worker i never agreed with the majority, there is no gain of
credibility from other workers that provided the majority answer
(i.e. Yi,d is an empty set and therefore yi,d = 0), and (iii) theworkers
with whom the worker i disagreed and that provided the majority
answer have the highest credibility score, so the worker i loses 1 in
credibility for disagreement (i.e. xi,d = 1). On the other hand, the
credibility ri,d assumes the maximum value 1 when the following
conditions are satisfied: (i) the worker i agreed with the majority
in all the tasks he/she performed (i.e. si,d = 1), (ii) theworkerswith
whom he/she agreed have the highest credibility score, so there is
the maximum gain of credibility from these workers (i.e. yi,d =
1), and (iii) as the worker i never disagreed with workers who
provided the majority answer, there is no loss of credibility for
disagree with such workers (i.e. Xi,d is an empty set and xi,d = 0).

These credibility metrics fit well into our objective of con-
sidering a diversity of credibility aspects of workers’ behaviour.
Surface agreement is the simplest metric; it takes into account
only the raw agreement among workers. Experienced agreement,
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in turn, measures the real agreement by deducting from the raw
agreement the amount of agreement that may occur simply by
chance. Weighted agreement weighs the effect of the amount of
data used to compute the degree of agreement. Finally, reputed
agreement takes into account not only the amount of agreement
exhibited by a worker, but also the credibility of the workers with
whom he/she agreed or disagreed.

3.2. Measuring the credibility of answers and groups of answers

The credibility of an answer is the credibility of the worker who
generates it. Thus, for example, when a worker w with credibility
0.8 performs a given task, the answer provided by such worker to
such task has credibility 0.8. Equal answers generated by different
workers for the same task are matched together into groups of
answers. For a task, we have g groups of answers, each denoted
by Ga, for 1 ≤ a ≤ g . The credibility C(Ga) of a group of answers
Ga is the probability of the answers in the group be good and
the answers in the other groups for the same task be bad. It is
computed according to the credibility of the answers in the group
as expressed by Eq. (8).

C(Ga) =
P(Ga good)

∏
i̸=a P(Gi bad)∏g

j=1 P(Gj bad)+
∑g

j=1 P(Gj good)
∏

i̸=j P(Gi bad)
. (8)

In this equation, P(Gagood) is the probability of the results in
the group Ga being good, computed as

∏
|Ga|
i=0C(Ri) for all answers Ri

in the group of answers Ga and where C(Ri) is the credibility of the
worker who provided the answer Ri. Correspondingly, P(Gabad) is
the probability of the answers in the group of answersGa being bad,
computed as

∏
|Ga|
i=0 (1−C(Ri)) for all answers Ri in Ga. This approach

was proposed to identify groups of bad answers generated by
machines in volunteer computing systems [45]. In this paper we
use it to measure the credibility of a group of answers provided by
a group of humanworkerswhen performing a human computation
task of a given degree of difficulty. Our main goal is to identify the
most credible group of answers. Formally, a group of answers Ga is
the most credible if C(Ga) > C(Gb), for 1 ≤ b ≤ g , and b ̸= a.

3.3. Replicating tasks according to credibility metrics

The main idea behind the credibility-based task replication is
to use credibility metrics to define, at execution time, whether
more replicas to the task are required. It is based on the three
types of credibility metrics described in the previous sections:
credibility of workers, credibility of answers, and credibility of groups
of answers. Algorithm 1 shows the sequence of steps3 computed in
the replication of a human computation task.

Given a task t , and a credibility metric m, the goal of the
Algorithm1 is to return a final answer to the task and the credibility
associatedwith that answer. This is done by attempting to generate
a minimum number of replicas and considering the following
restrictions:

• Minimal credibility in the final answer to the task (param-
eter reqCred). It is a decimal value between 0 and 1 which
indicates the desired credibility level for the final answer
obtained by the algorithm, so that it is considered credible
by the requester.
• Maximum number of replicas (parameter maxRepl). It is a

positive integer value greater than 0 which indicates the
maximum number of replicas that can be generated by the
algorithm.

3 For simplicity and clarity of computing steps, the algorithm is presented with-
out performance optimisation in the computations performed by digital computers.

ALGORITHM 1: Credibility-based Task Replication
input : Task t , Credibility metricm, Required credibility reqCred,

Maximum number of replicas maxRepl, Urgency urge
output: Final answer to the task finalAnswer , Credibility of the final

answer finalCred;

1 countRepl← 0; /* The total number of replicas already
generated by the algorithm. */

2 St ← {}; /* Map of works who provides each answer. */
3 numReplPerTurn← max(⌊maxRepl× urge⌋, 1);
4 repeat
5 numRepl← min(numReplPerTurn,maxRepl− countRepl);
6 createReplicas(numRepl, t, St ); /* It creates numRepl

replicas of task t, waits for their answers, and stores
these answers and respective worker ids in the map St.
*/

7 G← computeWorkersCredibility(St ,m); /* It computes the
credibilities of workers using credibility metric m;
the initial credibility of a worker is set to 0.51. */

8 finalAnswer, finalCred← getTheMostCredibleGroupOfAnswer(G);
/* It computes the credibilities of groups of answers
using Equation 8. */

9 countRepl← countRepl+ numRepl;
10 until finalCred ≥ reqCred or countRepl = maxRepl;
11 return finalAnswer, finalCred;

• Urgency level of execution (parameter urge). It is a decimal
value between 0 and 1 which indicates the level of urgency
to obtain a final answer to the task. If the requester wants
that all replicas of a task be generated at once, he/she sets the
value of urge to 1. If the requester admits that replicas are
sequentially generated one after another to conclude, he/she
sets the value of urge to 0.

The number of replicas executing in parallel (variable
numReplPerTurn, line 3 of Algorithm 1) varies according to the
maximum number of replicas and the urgency. When the urgency
assumes the value 1, all replicas (i.e. the maximum limit) are
generated at once. In this case, the algorithm has no possibility
to minimise the number of replicas that will be generated. On
the other hand, when the urgency is 0, replicas are created se-
quentially. At each iteration of the loop repeat-until, the algorithm
generates numRepl replicas of the task, waits for their answers,
calculates workers’ credibility, groups similar answers received
from them, calculates the credibility of each group of answers,
and identifies the most credible group of answers. A newcomer
worker, which is yet to execute a task, has its initial credibility
set to 0.51. The replication can stop either because the maximum
number of replicas was reached, or because the most credible
group of answers exhibits credibility equal or larger than the
required credibility. The algorithm reduces the number of replicas
used when it stops the replication before the maximum limit of
replicas is reached. The minimum number of replicas that can be
generated by the algorithm is 1. It occurs, for example, when the
urgency is set to 0, and the required credibility is smaller than the
credibility of the first worker that provides an answer.

The replication may end because the maximum number of
replicas was reached, but without satisfying the credibility re-
quirement. This occurs when an excessive amount of replicas has
been used and convergence to a final answer has not occurred.
In this case, two approaches are possible: conservative and non-
conservative. In a conservative perspective, tasks that do not reach
the required credibility threshold are marked as ‘‘inconclusive’’
and their answers are ignored. This is especially important when
seeking the correct answer of factual tasks. Inconclusive tasks may
have some features that the requester wants to further investigate,
or should be resubmitted to be analysed by more skilled workers.
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On the other hand, in a non-conservative perspective, all answers
are used even when the required credibility is not reached. The
non-conservative perspective is important in non-factual tasks, in
which the concept of correct answer is absent, and requesters do
not knowapriori the level of agreement that can be expected. Note,
however, that even in this case, it is possible to reduce the required
replication for some tasks, by setting an appropriate value for the
required credibility parameter.

The algorithmchooses the final answer to the tasks based on the
credibility of the workers who provided the answers. Therefore,
if a majority of workers provide the same incorrect answer, this
answer is only taken as the final answer if the credibility of this
group of answers is larger than the credibility of all other groups
of answers provided by the other workers that answered the task.
Thismaynot be the case, if themajority group is formedbyworkers
that are less credible than the workers in another minority group.

4. Evaluation

We evaluate the proposed approach by using trace-driven sim-
ulations [15]. Before presenting and discussing the results, we
detail the data sets used to guide the simulations, the simulation
model, and the evaluated scenarios.

4.1. Data sets

We use data collected from two human computation projects:
Sentiment Analysis, and Fact Evaluation. Tasks in the Sentiment
Analysis4 project ask workers to judge the sentiment expressed
in a tweet5 about the weather condition. The possible answers
to such tasks are: ‘‘negative’’, ‘‘neutral’’, ‘‘positive’’, ‘‘tweet not
related to weather condition’’, and ‘‘I can not tell’’. The data set
of this project consists of 569,375 replicas of 98,979 tasks that
were performed by 1958 workers. Tasks in the Fact Evaluation6

project, in turn, ask humans to judge facts about public figures on
Wikipedia, an example of fact is ‘‘StephenHawking graduated from
Oxford’’. The possible answers to this kind of tasks are: ‘‘yes, the
fact is correct’’, ‘‘no, the fact is not correct’’, and an option to skip if
theworker is unsure. The data set of this project consists of 220,000
replicas of 42,624 tasks thatwere performedby 57workers. In both
Sentiment Analysis and Fact Evaluation projects, a set of ground
truth tasks — tasks in which the correct answers are known — is
available. There are 300 ground truth tasks in the first project, and
576 in the other. The notable differences between the two projects
turn them valuable to evaluate the performance of the algorithm
in distinct scenarios.

4.2. The simulation of task replication and the computation of perfor-
mance metrics

The traces that guide the simulation are the data sets discussed
in the previous section. They provide the temporal order in which
the tasks are performed, each answer generated by every worker,
and the answers to the ground truth tasks. Simulations allow
us to evaluate a large number of configurations of the proposed
approach based on behaviour of workers in real systems.

4 Available at https://sites.google.com/site/crowdscale2013/shared-task/
sentiment-analysis-judgment-data.
5 Messages shared in the social network Twitter (http://twitter.com/).
6 Available at http://googleresearch.blogspot.com.br/2013/04/50000-lessons-

on-how-to-read-relation.html.

Simulation of the credibility-based task replication algorithm. The
dynamics of the trace-driven simulator are as follows. The task
replication algorithm is called for each task in the trace, with
maxRepl set to the number of replicas for the task available in
the trace. The algorithm performs the task replication taking from
the trace numRepl answers received to the task and the workers
that provided such answers. Then, it calculates the credibility of
the workers that provided these answers, and the credibility of
the answers and group of answers. After that, it decides whether
to generate another set of replicas for the task. This process is
repeated until the halt condition is met (line 10 of Algorithm 1).

Simulation of the comparative strategies. Besides the proposed task
replication algorithm, we also simulate two comparative strate-
gies: majority voting and oracle. For the majority voting strategy
the final answer to each task is that provided by the majority of
workers who performed the task. We consider two cases: one that
uses only 3 answers, i.e. the smallest level of replication possi-
ble for majority voting, and another that uses all answers in the
trace. These configurations provide a trade-off between accuracy
and replication cost. The oracle, in turn, knows whether a worker
provides a correct answer or not. For each task stored in the trace,
it reads the answer provided to the replicas sequentially. When it
reads a correct answer, it stops replicating the task. Thus, the oracle
stops replication as soon as the first correct answer is received from
aworker. If none of the received answers is correct, the oracle uses
all the answers stored in the trace and ends the replication with
the last read answer.

Computation of performance metrics. In each simulation, as the
trace is processed, the simulator generates the following outputs:

• Replication reduction. It is a measure of the proportional
reduction in the number of used replicas. For example, if
there are 5000 replicas in the trace and the proposed al-
gorithm ends the replication generating 3000 replicas, the
replication reduction is (5000− 3000)/5000 = 0.4.
• Accuracy. It is the hit rate of final answers chosen by the

algorithm and the answers in the ground-truth tasks. For
example, if there are 300 ground truth tasks in the project
and in 210 of them the algorithm reached an answer equal
to the ground truth answer, the accuracy is 210/300 = 0.7.
• Proportion of inconclusive tasks. It is the proportion of tasks

for which the proposed algorithm does not reach a final
answer that meets the level of credibility required by the
requester. For example, if the requester submits a set of
1000 tasks and requires a level of credibility of 0.95, but the
algorithm reached at least such credibility in only 900 tasks,
the proportion of inconclusive tasks is (1000−900)/1000 =
0.1.

By construction, the accuracy reached for the oracle is the
highest possible. It can be less than 1 in cases where there are
tasks for which none of the answers received to the task is a
correct answer. The oracle provides the best replication reduction
that can be achieved without compromising accuracy. A strategy
that interrupts replication before a correct answer is obtained, can
achieve a higher replication reduction than the oracle, but with
an associated cost in terms of reduced accuracy. The maximum
number of replicas that the proposed algorithm and the oracle can
generate to the task in the simulation is limited to the number of
answers available in the trace. One of the main objectives of the
evaluation is to verify to what extent the strategies are able to get
an accurate answer to the task and interrupt its replication before
using all the answers (replicas) available in the trace. The majority
voting strategy is a very simple, and commonly used, aggregation
method, and provides a kind of lower bound on the accuracy that
can be achieved.

https://sites.google.com/site/crowdscale2013/shared-task/sentiment-analysis-judgment-data
https://sites.google.com/site/crowdscale2013/shared-task/sentiment-analysis-judgment-data
http://twitter.com/
http://googleresearch.blogspot.com.br/2013/04/50000-lessons-on-how-to-read-relation.html
http://googleresearch.blogspot.com.br/2013/04/50000-lessons-on-how-to-read-relation.html
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Table 1
Configurations of the task replication.

Independent variables Credibility metric (surface, experienced, reputed, weighted)
Required credibility (0.6, 0.7, 0.8, 0.91, 0.93, 0.95, 0.97, 0.99)
Urgency (0, 0.25, 0.5, 0.75, 1)

Dependent variables Replication reduction
Accuracy
Proportion of inconclusive tasks

Comparative scenarios Lower bound (majority voting with 3 replicas, and with all possible
replicas)
Upper bound (oracle)

4.3. Configurations of the simulations

We simulate several configurations of the proposed algorithm
(Table 1). Each configuration is a combination of the levels of
the independent variables (credibility metric, required credibility
and urgency). The effect of varying such levels was measured by
using three dependent variables, that are the performance metrics
defined above.

The combination of the levels of the independent variables in
each data set results in a total of 160 different configurations of the
proposed algorithm. To identify the best configurations, we used
a multi-objective optimisation analysis based on the concept of
Pareto front [46]. The main objectives are to maximise replication
reduction and the accuracy of the answers. In the conservative
perspective, an additional objective is to minimise the proportion
of inconclusive tasks.

By using Pareto front analysis, we want to identify the set of
dominant configurations in terms of their effects on the dependent
variables. Dominant configurations are those that show better
results than those presented by the dominated configurations. A
configuration A dominates a configuration B if A outscores B in
at least one objective, and A is not worse than B in any of the
objectives.

Because some of the algorithms can stop the replication of a
task before using all the answers available in the trace, the order
in which the answers to the task appear in the trace can impact
the effectiveness of the algorithms. This impact was measured
by running 5 simulations of each configuration of the algorithms,
using the answers to each task in the trace sorted randomly. In
analysing the results, we always show the average of the results
obtained in these simulations with error bars to a confidence level
of 95%.

4.4. Results

We first present the results on workers’ credibility and the
difficulty of tasks. After that, we present the results about the
performance of the task replication.

Difficulty of tasks and credibility metrics. The studied projects differ
among themselves in terms of the degree of difficulty of their tasks.
There are 24 degrees of difficulty in the Sentiment Analysis project
(min = 0, max = 2.3) and 6 degrees of difficulty in the Fact
Evaluation project (min = 0, max = 2.7). Using data from all
workers and all tasks, we estimate the credibility of each worker
in every possible degree of difficulty.

We canmeasure the difference between the values of credibility
estimated by using two different credibility metrics as a mean
absolute difference. Let x and y be two credibilitymetrics, themean
absolute difference for thesemetrics (m(x, y)) in a set ofworkersW
is defined as in Eq. (9). It assumes the value 0 when the values of
the credibility estimated by the metrics are all equal; on the other
hand, it assumes the value 1 when the values estimated by one

metric are equal to 0 for all workers, and the values estimated by
the other metric are equal to 1 for all workers.

m(x, y) =
1
|W |
×

∑
w∈W

|xw − yw| . (9)

We computed the mean absolute difference between each pair
of metrics. The results indicate that the credibility metrics tend to
estimate different values of credibility, except in very easy tasks
in which the metrics estimate values of credibility closer to each
other because in this case workers tend to be credible regardless of
how credibility is measured. In the Fact Evaluation project, surface
agreement and weighted agreement metrics are equal (distance is
zero) when d = 0.0, d = 0.7, and d = 1.0. In the Sentiment
Analysis project, surface agreement and experienced agreement
metrics are equal when d ≤ 0.2. For the other pairs of metrics,
the distance is zero only when d = 0.

Task replication. We examine the effect of the required credibil-
ity parameter in the performance of the algorithm (Fig. 1). The
main result is that the higher the required credibility, the lower the
replication reduction, and the higher both the proportion of incon-
clusive tasks and the accuracy on conclusive tasks. The only benefit
of increasing the required credibility is the resulting increase in
accuracy. It occurs regardless the project and credibility metric
used. Small differences can be observed between the metrics. For
example, when the required credibility tends to 1, the metrics
reputed agreement and weighted agreement tend to reach higher
accuracy, but higher proportion of inconclusive tasks, and lower
replication reduction compared to the other metrics. It happens
because these metrics usually generate lower values of credibility
than the values generated by the other metrics. Combined with a
higher required credibility, it makes the algorithm less inclined to
stop replication. Results in Fig. 1 are for urgency equal to 0.

We examine the effect of the urgency parameter on the ef-
fectiveness of the task replication algorithm (Fig. 2). The most
important result is that the higher the urgency, the lower the repli-
cation reduction, and the higher both the proportion of inconclusive
tasks and the accuracy. As expected, when the urgency is 1, there
is no replication reduction because all replicas of the tasks are
generated and executed at once. However, one indirect benefit of
using urgency 1 is that, although the algorithm has no room to
reduce replication, it still chooses the final answers to the tasks
according to the credibility, which improves accuracy. On the other
hand, when the urgency is set to a value equal to 0, replicas of
a task are generated and executed one at a time. In this case, the
algorithm can detect when a credible answer is obtained and stops
replication. It is the configuration in which the algorithm reaches
the highest replication reduction.

We also investigate the influence that the difficulty of the tasks
being replicated may have on the performance of the algorithm.
Table 2 shows: (i) the correlation between the difficulty degree of
a task and the credibility of the answer obtained by the algorithm
(ρ(d, c)); and also (ii) the correlation between the difficulty degree
of a task and the replication reduction achieved by the algorithm
(ρ(d, s)). The results show a negative correlation between the
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(a) Sentiment analysis. (b) Fact evaluation.

Fig. 1. Accuracy, replication reduction and proportion of inconclusive tasks generated by the proposed algorithm when the value of required credibility and the credibility
metric are varied. Urgency is 0.

(a) Sentiment analysis. (b) Fact evaluation.

Fig. 2. Accuracy, replication reduction and proportion of inconclusive tasks generated by the proposed algorithm when the value of urgency and the credibility metric are
varied. Required credibility is 0.95.

Table 2
Spearman correlation between the difficulty degree and credibility of answers (ρ(d, c)) and between the difficulty de-
gree and replication reduction (ρ(d, s)).

Sentiment analysis Fact evaluation

ρ(d, c) ρ(d, s) ρ(d, c) ρ(d, s)

Surface −0.20± 0.06 −0.33± 0.05 −0.09± 0.01 −0.02± 0.01
Experienced −0.11± 0.06 −0.29± 0.05 −0.05± 0.01 −0.04± 0.01
Reputed −0.47± 0.04 −0.49± 0.04 −0.80± 0.003 −0.74± 0.01
Weighted −0.44± 0.05 −0.50± 0.04 −0.16± 0.01 −0.04± 0.01

difficulty degree and the credibility of the answers. It indicates
that the higher the difficulty degree of a task, the lower the credibility
of the answer obtained by the algorithm. This correlation is more
relevant when the algorithm uses the metrics reputed agreement
(ρ(d, c) = −0.47 in the Sentiment Analysis project and ρ(d, c) =
−0.8 in the Fact Evaluation project). The results also show that

the replication reduction is negatively correlated to the difficulty
degree of a task. This indicates that the higher the difficulty degree,
the lower the replication reduction achieved by the algorithm. This
correlation is strongwhen themetric reputed agreement is used in
the Fact Evaluation project (ρ(d, s)=−0.74) and when the metric
weighted agreement is used in the Sentiment Analysis project
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(ρ(d, s) = −0.5). Overall, these results indicate that the impact of
the algorithm is more moderate in terms of replication reduction
and answers credibility improvement when the tasks are difficult.

Pareto front. We analyse the best configurations of the algorithm
by using the Pareto front analysis. We evaluate 160 configurations
that differ among themselves in terms of required credibility,
urgency and the credibility metric used. We consider both the
conservative and non-conservative perspectives.

In the non-conservative perspective, the Pareto front consists
of 13 (8%) configurations in the Fact Evaluation project and 26
(16%) configurations in the Sentiment Analysis project. No config-
uration in the Pareto front includes the metric surface agreement,
indicating that such metric is dominated by the others. In the
conservative perspective, in turn, the Pareto front consists of 6 (4%)
configurations in the Sentiment Analysis project (Table 3) and 3
(2%) configurations in the Fact Evaluation project (Table 4). The
choice of one of these configurations depends on the requester’s
interest, giving higher priority to the accuracy, replication reduc-
tion, or both. Only themetrics experienced agreement and reputed
agreement appear in the Pareto front, being, therefore, the best
metrics to optimise accuracy and replication reduction in this case.
Analysing the performance of the comparative strategies (Tables 3
and 4), we observe that the configurations in the Pareto front reach
accuracy, if not higher, at least comparable with majority voting,
but in most cases with a substantial gain in terms of replication
reduction. By construction, the accuracy reached by the oracle is
the highest possible, and the replication reduction is the highest
achievable, without compromising accuracy. When compared to
the oracle strategy, the proposed approach achieves equivalent
replication reduction, with a small decrease on the accuracy at-
tained. Of course, in the proposed algorithm, if the requester sets a
very low value for the required credibility or a very high urgency,
both accuracy and replication reduction will be compromised.
Thus, it is expected that some configurations of the algorithm
may achieve results that are worse than those achieved by the
comparative strategies.

Finally it isworth noting that even low replication reduction can
be of great relevance when the absolute values are analysed. For
example, we analyse the absolute values of the lowest and largest
replication reduction in Tables 3 and 4. In the Sentiment Analysis
project, the lowest replication reduction is 0.17, which represents
a reduction of 96,794 replicas in the project and an average of 1
replica reduced per task. The largest replication reduction is 0.78,
which represents a reduction of 444,112 replicas in the whole
project and an average of 4 replicas reduced per task. In the Fact
Evaluation project, the lowest replication reduction is 0.78, which
represents a reduction of 171,600 replicas in the project and an
average of 4.02 replicas reduced per task. The larger replication
reduction in this project is 0.80, which represents a reduction
of 176,000 replicas in the whole project and an average of 4.13
replicas reduced per task.

5. Discussion

Our results show the characteristics and performance of our
approach to measure workers’ credibility and perform the repli-
cation of human computation tasks considering information about
the credibility score of workers. In this section we discuss the
main novelties brought by our study, the implications for human
computation and related fields, and assumptions and limitations of
our analysis.

The performance of task replication in human computation. The
effectiveness of the replication is highly influenced by both the
parameters defined by the requesters (e.g. required credibility and
urgency) and tasks characteristics (e.g. difficulty). When the repli-
cation is configured to prioritise the accuracy of the answers, it is
able to outperform themajority voting reference strategy. When it
is configured to prioritise replication reduction, it is able to outper-
form the oracle reference strategy. Regarding the difficulty of tasks,
our algorithm is more effective in easy tasks. It autonomously
finds such tasks and uses a suitable level of replication for them,
obtaining credible answers and reduction of replication.

Implications. Our findings contribute to a growing body of knowl-
edge about workers agreement. By exploring four different ways
to measure agreement, and highlighting differences among them,
we expand the concept of agreement, and establish different di-
mensions not considered previously. Together with previous work
[40,47], our results suggest that the agreement among workers is
the common case, while disagreement is an important signal of
problems in the task. The Shannon entropy can help us to find hard
tasks, but also poorly designed tasks or problem in their input data.

We show that the proposed metrics can be incorporated in
the dynamics of task replication in human computation systems
in order to enhance their performance. The credibility-based task
replication allows requesters to obtain accurate answers and repli-
cation reduction, while they control other requirements, such
as urgency and required credibility. It shows the importance of
replication strategies in the design space of human computation
system, which had been under explored before. Still it remains
to be known whether one can get a perfect accuracy as reached
by the oracle. Even statistical methods focused only on increasing
accuracy have not achieved perfect accuracy as generated by the
oracle [36,38]. Also, there are tasks in which only an expert can
decide which answer is most appropriate [48,40].

Task replication can add to other initiatives that have been
extensively investigated in human computation systems. For ex-
ample, our algorithm can be combined with a task scheduling
algorithm in a way that our algorithm decides to which tasks it
is advantageous to get more answers from the workers and the
scheduling algorithm decides the right workers to perform such
tasks, e.g. the most credible ones. It works similarly to an active
learning approach. Task replication can also be combined with
an expert review strategy. Because experts are usually in low
availability and high cost, it is more advantageous to use their
computational power only for the few task that cannot be dealt
with by ordinary workers. This is the case of inconclusive tasks
identified by our algorithm.

An appropriate definition of the degree of replication of tasks
can also benefit workers. For example, in crowdsourced citizen
science systems, an excessive redundancy per task mean that the
time devoted by volunteers is being wasted with unnecessary re-
dundantwork. It can be a discouraging factor for volunteerswilling
to contribute [49,50]. By using an appropriate degree of replication,
the system ensures that the time devoted by the volunteer is being
well used.

The proposed credibility metrics can be used to inform the
system about how to provide contextual feedback to workers.
Providing feedback to workers have shown to be very important
to keep them engaged and improve their performance [51]. Such
feedback can inform each worker in which aspect he/she falls
short, promoting the evolution of their skills [52]. For example,
the system can inform a worker that he/she has exhibited low
experienced agreement, which indicates that answers provided by
him/her have a strong randombias. Besides such feedback, training
tasks can be routed in a way to help workers improving their
credibility.
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Table 3
Configurations in the Pareto front of the sentiment analysis project.

Algorithm configuration Performance

Required credibility Urgency Metric Replication reduction Accuracy

0.60 0.00 Experienced 0.78± 0.01 0.83± 0.02
0.70 0.00 Experienced 0.77± 0.01 0.84± 0.04
0.91 0.00 Experienced 0.66± 0.03 0.85± 0.03
0.93 0.00 Experienced 0.64± 0.03 0.86± 0.01
0.91 0.25 Reputed 0.33± 0.03 0.87± 0.04
0.70 0.75 Experienced 0.17± 0.01 0.89± 0.02

Comparative scenarios
Majority voting with 3 replicas 0.48 0.83± 0.02
Majority voting with all replicas 0.00 0.86
Oracle 0.76± 0.01 1.00

Table 4
Configurations in the Pareto front of the fact evaluation project.

Algorithm configuration Performance

Required credibility Urgency Metric Replication reduction Accuracy

0.60 0.00 Experienced 0.80± 0.00 0.90± 0.01
0.70 0.00 Experienced 0.80± 0.00 0.90± 0.01
0.60 0.00 Reputed 0.78± 0.01 0.91± 0.01

Comparative scenarios
Majority voting with 3 replicas 0.42 0.89± 0.01
Majority voting with all replicas 0.00 0.90
Oracle 0,74± 0.01 1.00

Limitations. The proposed approach has limitations that should be
highlighted. It is designed for human computation projects made
up of micro-tasks, not being appropriate for macro-tasks projects.
The credibility metrics make no assumptions on the type of in-
structions of tasks, and type of input data, e.g. images, text, audio,
video, and so forth. However, because they aggregate the answers
to detect convergences and divergences, they assume that the
answers provided by theworkers are structured. This is usually the
case in classification, andmultiple-choice tasks.We only evaluated
our approach with factual tasks because of the limited availability
of data sets with non-factual tasks. However, there is nothing in
the metrics and algorithms that prevent them from being used
with non-factual tasks whose answers are aggregated based on
agreement. Finally, the estimation of the credibility of workers
per each difficulty degree may be less accurate for workers who
perform few tasks. Fortunately, the largest contributions to the
systems are normally given by the minority of workers who works
on a large set of tasks [49,53].

6. Conclusion

In this paper, we explored the use of agreement-based credi-
bility metrics to improve task replication in human computation
systems. Our contribution is threefold: (1) we integrate concepts
from the literature of human computation, namely credibility as-
sessment and replication of tasks; (2) we propose four metrics to
automatically measure the credibility of workers while they exe-
cute tasks in the system; (3) we propose an adaptive task replica-
tion algorithm that optimises the degree of replication according to
workers’ credibility and requesters’ requirements. Our evaluation
consisted in simulating the replication algorithm using data from
two human computation systems, and covering a wide parameter
space. The results show that the credibility-based task replication
algorithm can be effective in reducing the degree of replication,
while meeting other requirements from the requesters, such as
required credibility and urgency.

Our study suggests a number of avenues for future work. For
example, future research can investigate: (1) the use of credibility
metrics to provide contextual feedback to workers about their
performance; (2) the combination of credibility assessment with

other mechanisms such as gold standard tasks and expert review;
and (3) in-depth analysis of the role that task replication plays in
the design space of human computation systems. The promising
results presented in this paper should also catch the attention of
the operators of existing human computation platforms. It would
be of great interest to have the proposed techniques implemented
and deployed in real systems, and assess their performance in
these systems. Thus, research on credibility assessment and task
replication promises to continue to be an exciting aspect for dis-
tributed human computation.
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