
Energy Efficient Computing through Productivity-Aware Frequency Scaling

Lesandro Ponciano, Andrey Brito, Lı́via Sampaio, Francisco Brasileiro

Departamento de Sistemas e Computação
Universidade Federal de Campina Grande

Campina Grande, Brazil
Emails: {lesandrop, andrey, livia, fubica}@lsd.ufcg.edu.br

Abstract—This paper proposes a new policy for dynamic fre-
quency scaling: productivity-aware frequency scaling (PAFS).
PAFS aims at optimizing energy consumptions while still
satisfying performance requirements of a given application. In
contrast to the commonly-used ondemand frequency scaling,
PAFS may keep the processor in a power save state even in
high CPU-usage situations. This will be the case as long as
the application (or set of applications) for which productivity
is to be preserved presents acceptable performance (e.g., as
stablished by a QoS contract). Our experiments show savings
of up to 23.65% in energy consumption when compared to the
commonly used ondemand DFS policy with no performance
degradation for the productivity metric. PAFS is, therefore,
binded to a single or a set of applications running in a machine.
Nevertheless, compared to previous approaches to application-
specific frequency scaling, PAFS does not require modifying
the application or a calibration process. PAFS requires only
a productivity metric which may already be exported by an
application (e.g., through a log file, such as response time
or throughput in an Apache webserver) or which may be
computed through a simple program or script.

Keywords-power-efficient computing, green IT, quality of
service, frequency scaling

I. INTRODUCTION

Nowadays, energy efficiency is one of the key chal-

lenges in design and management of computing systems.

Decreasing costs for hardware and increasing concerns about

operating costs and environmental impacts have motivated a

huge growth in research on energy efficient systems.

Processors are responsible for most of a system’s power

consumption. For example, in our DELL R410 servers, a

simple CPU-intensive application (no memory, network, or

disk usage) changes the total machine consumption from 103
watts (idle) to 253 watts (100% CPU utilization). Therefore,

one widely-used mechanism to reduce processors’ power

consumption is dynamic frequency scaling (DFS) [1], [2],

which consists in changing processor clock frequency in real

time.

Reducing processor frequency may reduce power con-

sumption, as the lower the processor frequency the lower

its power consumption [3]. On the other hand, except in

very specific cases (e.g., due to contention issues, as we

show later), reducing processor frequency will cause a

negative impact on applications’ performance. Thus, the

major issue on DFS effectiveness is the policy used to

decide in which frequency the processor should operate at

each time. Usually, frequency scaling is performed by poli-

cies at compiler/application-level [4]–[6], operating system-

level [7]–[10], or task-level [11]–[16].
Application-level policies define DFS at application de-

sign time. This approach allows optimizing both processor

power consumption and application performance, but it

requires the offline profilling and tuning of the application.

System-level policies, in turn, do not consider application

characteristics, and they change the processor frequency in

response to variations on the system load. However, not

knowing applications characteristics, system-level DFS will

never achieve savings comparable to the ones achieveable

with application-level tunning.
Finally, task-level policies are between these two ap-

proaches. This type of policy carries outs DFS taking

into account some performance indicator (e.g., service-level

agreements – SLA, and application service level objectives

– SLO). The present work focuses on task level DFS. In

contrast to existing task-level approaches, ours generalizes

these approaches and enable users to define custom targets

with the same policy.
In this work we propose productivity-aware dynamic

frequency scaling (PAFS), which is a DFS policy decou-

pled from both the application and the operating system.

It changes processor frequency based on a productivity
metric, which consists on one or a combination of several

performance metrics (i.e., a utility function [17]). PAFS

does not require any offline tuning and aims at achieving

energy savings and productivity without assuming any prior

knowledge about application workload.
Our evaluation method is based on experimental analysis.

We compare PAFS with other policies that focus on power

saving, maximum system performance, and load-dependent

performance. We evaluate several scenarios varying the

productivity metric (response time, throughput) and the fre-

quency scaling policy. We also evaluate CPU, I/O-intensive,

and hybrid workloads.
Our main contributions are:

• We introduce productivity as a generalization for what

good performance means. Furthermore, based on this

principle, we propose productivity-aware frequency

scaling (PAFS), a policy that aims at achieving en-

2012 Second International Conference on Cloud and Green Computing

978-0-7695-4864-7/12 $26.00 © 2012 IEEE

DOI 10.1109/CGC.2012.59

191

ergy savings and satisfying performance requirements

without offline profiling and tuning, or assuming prior

knowledge about application workloads;

• Our system enables binding savings and performance

guarantees (e.g., quality of service – QoS – guarantees)

to keep the system in the most energy-efficient mode

while meeting required performance levels (indepen-

dently of the actual CPU load levels), but still is able

to quickly react as situations change.

• We show that by achieving energy savings and pro-

ductivity requirements, PAFS complements the range

of options for frequency scaling policies: ondemand,

performance, and powersave.

In the remainder of this paper, before detailing the exper-

imental setup and presenting our results (Section IV), we re-

view the relevant background and related work (Section II),

and present our PAFS policy (Section III).

II. BACKGROUND AND RELATED WORK

In this section, we provide some background information

on how DFS is supported by modern hardware and discuss

related work on frequency scaling techniques.

A. Background

Modern processors can run at a range of clock frequen-

cies, for example, using Intel’s SpeedStep [18] and AMD’s

Cool ’n’ Quiet [19] technologies. Dynamic frequency scal-

ing is a mechanism that allows scaling processor frequency

by software instructions. This mechanism enables the re-

duction on power consumption by lowering the processor

frequency (with a potential negative impact on system’s

performance). The power consumption in a processor is a

nonlinear function of the operating frequency and voltage.

Nevertheless, voltage and frequency are related; it is not

possible to put the processor in a high frequency state

without also increasing its supply voltage. Therefore, when

frequency is changed, voltage is automatically changed to

match requirements.

Adjusting the frequency (and power management in gen-

eral) can be made through a platform-independent inter-

face named Advanced Configuration and Power Interface

(ACPI) [20]. Regarding frequency scaling, ACPI defines

power-performance states (P-states). These states vary be-

tween P0, the highest-performance state, and Pn the lowest-

performance state.

B. Related Work

Processor frequency scaling has been studied from differ-

ent perspectives and with different goals. According to the

level at which frequency scaling is applied and whether per-

formance metrics are considered or not, the studies may be

broadly divided into three categories: application/compiler-

level [4]–[6], task-level [11]–[16], and system-level [7]–[10].

Application/compiler-level policies perform DFS at

application-level or with some compiler support, focusing

on a specific infrastructure, performance metrics, and/or

energy saving goals. For example, the Intel Energy Checker

SDK [4] is an API to help constructing green software by

exporting application progress metrics and importing energy

consumption measurements (from hardware meters). Thus,

the energy-efficiency policies can be implemented in the

application using consumption measurements imported from

the meters. The advantage of this approach is that frequency

scaling decisions are aware of application current and future

behavior, such as loops, recursive calls, message exchanges,

and deadlines, allowing a more accurate DFS. On the other

hand, the developer must be aware of energy consumption

at the application design [4]–[6], or use a specific compiler

to help on this task [21]. In other words, in design time

both performance and energy need to be considered. In our

approach, energy considerations are automated in run time.

The task-level category, in turn, comprehends policies

that are not coupled to the application code, but are aware

of running applications. Works in this category perform

DFS taking into account some performance indicator (e.g.,
application deadlines [13], [14], service-level agreements –

SLA [12], [15], and application service level objectives –

SLO [16]) or prior knowledge about the characteristics of

the infrastructure workload (e.g., resource utilization [11]).

In general, the two main differences between our DFS

approach and related works are that (i) we generalize the

concept of performance in a productivity metric; and (ii) we

do not require any prior information on system’s behavior.

Furthermore, our approach allows using the same policy with

different productivity metrics, which are defined according

to the user requirements.

System-level strategies perform DFS at the operating

system without considering any application characteristics.

A number of system-level policies can be found in the

literature [7]–[10]. Particularly, some of them are broadly

used in today’s production systems based on both Linux

and Windows [7], [8], namely: Performance, Powersave, and

Ondemand. The Performance policy focuses on maximizing

the application performance by setting the CPU to run at the

highest supported frequency. At the opposite side, the Pow-

ersave policy focuses on minimizing the power consumption

by setting the CPU to run at the lowest supported frequency.

Lastly, the Ondemand policy adapts the CPU frequency

to the current system load. According to this policy, the

system load is checked periodically, and, when the load rises

above a predefined threshold, the CPU is set to run at the

next higher frequency. Otherwise, if the load falls below

another threshold, the CPU is set to run at the next lower

frequency. In this work we compare our PAFS policy with

these policies.

192

III. PRODUCTIVITY-AWARE FREQUENCY SCALING

As mentioned previously, the main contribution of PAFS

is to empower users to dynamically control power con-

sumption based on application’s productivity needs, for

example, achieving desired QoS levels, but not unnecessarily

exceeding them (in contrast to system-level policies), while

still not requiring applications to be constructed specifically

for that purpose (in contrast to application-level policies).

The abstraction that isolates the application and the per-

formance control is the productivity, a user-defined metric.

We start by presenting the control algorithm used by PAFS to

actuate in the system and, then, we discuss how meaningful

metrics can be defined in a straightforward manner.

A. Optimizing system consumption

The PAFS aims at regulating system’s power consumption

to operate in acceptable levels of performance-consumption

trade offs. Therefore, users may save energy by specifying

a performance level that is no greater than what is required

to achieve the required QoS level in the medium term. In

this case, a contract is written with two parameters: one for

the application productivity metric and one for the upper

bound on the number of performance faults. For example,

for a web server the value of the productivity metric could

be related to the response time and the fault ratio would be

the maximum acceptable percentage of requests for which

the response time exceeds the required level.

The system starts at its highest available frequency. If

productivity is already worse than the one established in the

contract, the system will never be put in a lower performance

state. This is an indication that the contract defined by the

user does not make sense. However, if the contract is feasible

the system will be satisfying the desired productivity levels

(at least while operating at its maximum performance) and

PAFS will be allowed to actuate.

When in operation, PAFS will periodically (with period-

icity ΔT) decrease the processors clock frequency (and,

consequently, power consumption) in steps (ΔF) until a

performance fault happens (e.g., the servicing of a request

exceeds the contracted response time). At this point the con-

trol algorithm will increase the processor’s clock frequency,

again in steps, until it detects that response time is back

to satisfactory levels. The control algorithm will then try to

decrease the processor’s frequency only when the number

of performance faults do not exceed the percentage allowed

by the contract (i.e., the algorithm keeps state).

The simple approach defined above will lead to a system

that is naturally unstable. In fact, instability is a necessary

feature as application performance (and thus, the productiv-

ity metric) is inevitably related with the workload profile,

which is normally dynamic.

Finally, to fully define the control algorithm, the values

of ΔT and ΔF must be determined. Unfortunately, these

parameters cannot be at the same time statically defined

and optimal. Choosing ΔT is particularly hard. Different

applications will have different dynamics. Consider, for

example, two different applications as following. In the first

application the metric is updated only every few seconds.

For this application, a small ΔT will make the system react

before the impact of the previous action is reflected in the

metrics and the system will, consequently, take a series

of inadequate actions every time a change happens. In the

second application, which is subjected to erratic workloads,

a large ΔT will make the system blind to request bursts, that

will be badly served. As a consequence, the fault rate will

become very high and, after the burst, when load is much

lower, the system will be consistently (and wastingly) put in

a high performance state to minimize the risk of additional

faults.

For the aforementioned reason, we consider an approach

that is very simple, but which has proved useful in our

evaluation. The approach is the same as the one employed

by the Ondemand policy in standard systems: ΔT is fixed,

but may be manually changed and ΔF is the smallest

step in the list of processor enabled frequencies. Later we

will discuss improvements that can be made to provide an

adaptive behavior to PAFS.

B. Measuring productivity

In the previous section we assumed the existence of

a productivity metric. For example, consider an Apache

web server [22]. This server will log every request served.

Therefore, one simple way to start defining a throughput

metric is using the size of the log file. The user may then

write a script that periodically reads the file size and execute

some computation (e.g., subtract the previous size from the

current) and write the resulting value to a special file that

will be periodically read by PAFS.

Writing a script is also useful in many other cases, for

example, the user may consider very different types of

metrics: (i) count only real requests logged; (ii) consider

response time, which is also available in Apache, but needs

to be read from the actual log messages (note that in this

case, the user would have to specify that lower is better

or simply invert the value, depending on how the contract

is written); (iii) actually probe the service being ran to

measure performance; (iv) consider dynamic rules (e.g., if

there are more gold clients in the log, performance should

be favored); (v) combine any mix of parameters and metrics

from the application (e.g., response time), the environment

(e.g., dynamic power costs), and the machine (e.g., actual

power) to compute the metric.

If QoS needs are not strict, one way of specifying a

contract is by executing an experiment at the highest per-

formance level (in order to get realistic upper bounds on

productivity values) and writing a contract that considers a

slightly lower QoS (to provide some maneuvering room for

power saving). Through this approach, the user is stating that

193

a performance loss is acceptable. Perhaps surprisingly, we

show later that specifying a contract with a productivity level

that is the same as the highest productivity level achievable

in the highest performance, already enables considerable

savings. This is a consequence of allowing (through an

acceptable performance fault rate) the system to constantly

verify if CPU speed is really a necessary resource for that

metric at that time.

Similarly, if users set a productivity metric that is not

related to CPU usage, such as network latency, PAFS may

increase the CPU frequency to a higher level trying to

achieve a better performance. However, this behavior will

not increase power consumption because if the CPU remain

idle, an ACPI CPU sleeping state (C-states [20]) will be

automatically used.

IV. EVALUATION

In the following sections we describe the testbed, describe

the application scenarios we considered to evaluate our

PAFS policy, and present the experimental results.

A. Experimental setup

Our server is equipped with two six-core Xeon 3.06 GHz
processors, 24 GB of DRAM memory and two gigabit net-

work cards. The processor supports 13 frequency steps be-

tween 1.6 GHz and 3.06 GHz (Intel’s SpeedStep technol-

ogy). We use the power meter embedded in the management

interface (DELL iDRAC 6) to measure power consumption

in real time. We run PAFS on a Linux 3.2.0-2 kernel,

which supports the standard DFS techniques (Powersave,

Performance, and Ondemand). PAFS controls the processor

frequency using Linux’s CPUFreq subsystem.

We chose to analyze the effectiveness of our policy in a

web server environment because this environment presents

several challenges in terms of both QoS level and energy

savings [23]–[25]. We implemented three web services

with different profiles regarding resource utilization: CPU-

intensive, I/O-intensive, and a hybrid version. These services

were implemented using the popular LAMP (Linux, Apache,

MySQL, and PHP) software bundle. This software runs in

background during all experiments.

When a request is received, the CPU-intensive service

generates 40 random IDs and searches for them in a small

MySQL database (50,000 records). By monitoring resource

usage, we confirmed that CPU was the bottleneck during the

execution of this service. The I/O-intensive service performs

4 random seeks on a 8.3GB text file per request received.

In this case, we confirm the disk was a bottleneck by noting

that an increase in the number of seeks would cause Apache

to time out on many requests. Finally, the hybrid service

uniformly mixes the two types of computations.

We use the Apache Benchmark [26], which runs on

a different machine, to generate the HTTP requests to

these services. The Apache Benchmark can be configured

regarding both the number of total requests and the number

of concurrent requests. Each experiment considers 500, 000
requests with 30 concurrent requests at a time.

B. Results

We designed our experiments to measure the effective-

ness of PAFS in balancing energy savings and productivity

requirements under three scenarios. The first scenario evalu-

ates system level policies in order to put the opportunity

for saving power into perspective. The second and third

scenarios compare the best system level policy with PAFS

when the productivity metric is defined to be throughput and

response time, respectively. Each experiment in each sce-

nario considered 20 Apache Benchmark executions in order

to achieve results with a statistical error with confidence

levels of 95%.

Scenario 1: In this scenario, we evaluate energy con-

sumption and the productivity metrics with the standard

power management policies: Performance, Powersave and

Ondemand. This scenario enables us to analyze the trade offs

between energy saving and system productivity when fre-

quency scaling focuses on (i) maximizing only application

performance (Performance policy), (ii) maximizing only

server power reduction (Powersave policy), (iii) dynamically

adjusting frequency based on processor usage (Ondemand).

Thus, this scenario aims at putting the opportunity for

saving power into perspective by taking maximum system

productivity into account. The results from our first set of

experiments are depicted in Figure 1.

In each figure, the horizontal axis includes the three

service profiles considered. Figure 1(a) depicts the average

power consumed during the experiment. Figure 1(b) depicts

the total energy consumed for all 500, 000 requests, which

depends on the power (in Watts) and the total duration

(in hours). Note that a lower power consumption does not

necessarily means energy efficiency as the system may have

to run for a longer period in order to process the same

amount of requests. Figures 1(c) and 1(d) depict the per-

request average service time and average throughput.

As we expected, the policies evaluated do not significantly

affect the productivity metrics for the I/O-intensive web

service. This happens because, in this service, the processing

of requests requires little CPU usage. Another important

observation is that in this kind of service, the Performance

policy does not increase neither power consumption nor

energy consumption compared to the Powersave policy. This

occurs because, although set to operate at higher frequency,

the processor stays idle most of the time.

We then analyze the Performance and Powersave poli-

cies in executions with the CPU-intensive and the hybrid

services. Our experiments show that Powersave reduces the

average power consumption, but has a huge impact in perfor-

mance (Figures 1(c) and 1(d)). This loss in performance is

not compensated by the decrease in consumption as seen in

194

0

50

100

150

200

250

300

CPU−intensive Hybrid I/O−intensive
Workload

P
ow

er
 (

W
)

Performance

Ondemand

Powersave

(a) Power consumption

0.00

0.02

0.04

0.06

CPU−intensive Hybrid I/O−intensive
Workload

E
ne

rg
y

C
on

su
m

pt
io

n
(k

W
h)

Performance

Ondemand

Powersave

(b) Energy consumption

0

20

40

60

CPU−intensive Hybrid I/O−intensive
Workload

R
eq

ue
st

s'
 r

es
po

ns
e

tim
e

(m
s)

Performance

Ondemand

Powersave

(c) Requests’ response time

0

500

1000

1500

2000

2500

CPU−intensive Hybrid I/O−intensive
Workload

T
hr

ou
gh

pu
t (

r/
s)

Performance

Ondemand

Powersave

(d) Throughput

Figure 1. Impact of the Performance, Powersave, and Ondemand policies on server’s total energy consumption and average power consumption, requests’
response time, and system’s throughput.

Figure 1(b): the energy costs are higher if executing in Pow-

ersave mode. On the other extreme, the Performance policy

does not achieve better results than Ondemand considering

the response time and throughput metrics.

Overall, the Ondemand policy is the most energy efficient

policy. It achieves energy consumption equivalent or lower

than that achieved by the Performance and Powersave poli-

cies, while mirroring the throughput and requests’ response

time of the Performance policy. In the next scenario, we

compare the Ondemand with our PAFS policy.

Scenario 2: In this scenario, we analyze the effec-

tiveness of the PAFS policy by using system throughput

as productivity metric. In order to evaluate different levels

of productivity requirements, we considered the results of

our previous experiments with the Performance policy and

collected the achieved productivity values. These values then

served as references for generating other realistic values for

the productivity metric. The target throughput values in the

contract were then defined to be equivalent to 100%, 97%,

95% and 90% of the best performance case. The values for

the contracts are depicted in Table I.

As shown in Figure 2, for the I/O-intensive web service,

the frequency scaling policies do not significantly affect

power and energy consumption. Nevertheless, for hybrid

and CPU-intensive web services, PAFS(100) consistently

exhibits a lower power consumption than the Ondemand

policy and at most an equivalent total energy consumption.

Table I
THROUGHPUT TARGET VALUES FOR THE PAFS CONTRACTS (WITH A

5% ALLOWED FAULT RATE).

Reference I/O-intensive CPU-intensive Hybrid
PAFS(100) 2410.87 622.24 1576.21
PAFS(97) 2338.54 603.57 1528.92
PAFS(95) 2290.33 591.13 1497.40
PAFS(90) 2169.78 560.02 1418.59

For the CPU-intensive web services, we can clearly note

the effect of a QoS reduction from 100% to 90% on the

consumed power and energy. Reducing the QoS tends to

reduce the power consumption and throughput (Figure 3),

but may increase the total energy consumed.

We also observed that increasing the CPUs frequency can

reduce the productivity of the main application in some

situations. This can be seen more clearly in the I/O-intensive

experiment (Figure 3). In this case, even PAFS(90) generated

a higher throughput than the Ondemand policy. Cases where

higher performance is obtained with a lower CPU frequency

have also been observed in related work [6].

We designed a simple experiment to better investigate

this effect. This experiment considers two simple programs.

The first program executes an I/O-intensive computation; it

updates random positions in a big file. The second program

executes a hybrid computation (including both CPU and

I/O-intensive operations). We then define productivity as the

195

0

50

100

150

200

250

300

CPU−intensive Hybrid I/O−intensive
Workload

P
ow

er
 (

W
)

Ondemand

PAFS(100)

PAFS(97)

PAFS(95)

PAFS(90)

(a) Power consumption

0.00

0.01

0.02

0.03

0.04

0.05

0.06

CPU−intensive Hybrid I/O−intensive
Workload

E
ne

rg
y

C
on

su
m

pt
io

n
(k

W
h)

Ondemand

PAFS(100)

PAFS(97)

PAFS(95)

PAFS(90)

(b) Energy consumption

Figure 2. Impact of the Ondemand and PAFS policies on server’s energy
and power consumption (productivity defined as throughput).

0

500

1000

1500

2000

2500

CPU−intensive Hybrid I/O−intensive
Workload

T
hr

ou
gh

pu
t (

r/
s)

Ondemand

PAFS(100)

PAFS(97)

PAFS(95)

PAFS(90)

Figure 3. Comparison between the Ondemand and the PAFS policies with
different contracts for throughput.

number of updates the first, purely I/O-intensive, program is

able to perform per second.

These two programs run concurrently in the same server

we used in the previous experiments. We did a set of

executions using the lowest and the highest CPU frequencies

available in the machine, namely, 1.60 and 3.06 GHz. The

results are shown in Figure 4. As previously, the graphs

indicate the average of the productivity metric with 95%
confidence intervals.

980

1000

1020

1040

1060

1080

1100

●

●

1.60 3.06
CPUs' frequency (GHz)

T
hr

ou
gh

pu
t

Figure 4. Effect of changing CPU frequencies in the productivity of an
I/O intensive application in an environment with high disk contention.

The effect shown in Figure 4 is clear, a lower CPU

frequency may lead to a higher productivity in the main

application. The explanation, although counterintuitive, is

simple. First, the performance of the purely I/O-intensive

application depends solely on the performance of the disk

and our productivity metric considers only this application.

Second, for its computations the hybrid application needs

to do some (not negligible) processing before issuing disk

requests.

When CPU frequency is higher, the second application

can do its processing faster and, thus, issues more disk

requests per second. Likewise, if the CPU frequency is

lower the processing of the hybrid application takes more

time, increasing the time between disk requests, and, con-

sequently, reducing the number of disk requests issues per

second. Consequently, with less disk requests from the other

application, the purely I/O-intensive application performs

better, which is reflected in its metric.

Scenario 3: This scenario differs from the previous

only regarding the productivity metric. We now analyze

the effectiveness of the PAFS policy when using requests’

response time as productivity metric. The values for the

contracts are depicted in Table II.

Table II
RESPONSE TIME TARGET VALUES FOR THE PAFS CONTRACTS (WITH A

5% ALLOWED FAULT RATE).

Reference I/O-intensive CPU-intensive Hybrid
PAFS(100) 12.23 48.94 19.13
PAFS(97) 12.60 50.41 19.70
PAFS(95) 12.84 51.39 20.09
PAFS(90) 13.45 53.83 21.04

The results of our third set of experiments are depicted in

Figures 5 and 6. Note that the benefit in terms of both energy

and power savings (Figure 5) are proportionally greater than

the performance degradation (Figure 6). In particular when

the reference is defined as PAFS(100), PAFS achieves the

196

required productivity (Figure 6), but it also reduces power

consumption (Figure 5(a)) and total energy consumption

(Figure 5(b)) in comparison to the Ondemand policy. This

effect is caused by the preventive behavior of Ondemand

and the reactive behavior of PAFS.

On the one hand, the Ondemand policy increases CPU

frequency preventively, without observing if this change is

justified by the main application (the one used to defined

productivity) or was triggered by other less important pro-

cesses running in background. On the other hand, PAFS

increases frequency only reactively, after observing an actual

deficit on productivity.

As expected, the results in Figure 6 show that, in CPU-

intensive service profiles, PAFS reduces requests’ response

time when the user reduces the response time in the QoS

requirement (contract). For example, PAFS(100) requires

a response time that is 100% as good as the response

time when in performance mode. Similarly, PAFS(90) is a

slightly degraded level, meaning a 10% acceptable increase

in response time.

0

50

100

150

200

250

300

CPU−intensive Hybrid I/O−intensive
Workload

P
ow

er
 (

W
)

Ondemand

PAFS(100)

PAFS(97)

PAFS(95)

PAFS(90)

(a) Power consumption

0.00

0.01

0.02

0.03

0.04

0.05

0.06

CPU−intensive Hybrid I/O−intensive
Workload

E
ne

rg
y

C
on

su
m

pt
io

n
(k

W
h)

Ondemand

PAFS(100)

PAFS(97)

PAFS(95)

PAFS(90)

(b) Energy consumption

Figure 5. Impact of the Ondemand and PAFS policies on server’s energy
and power consumption (productivity defined as response time).

In hybrid services, there is a performance degradation

when reference is changed from PAFS(100) to PAFS(97)

(i.e., QoS is reduced). However, there is no degradation of

0

10

20

30

40

50

CPU−intensive Hybrid I/O−intensive
Workload

R
eq

ue
st

s'
 r

es
po

ns
e

tim
e

(m
s)

Ondemand

PAFS(100)

PAFS(97)

PAFS(95)

PAFS(90)

Figure 6. Comparison between the Ondemand and the PAFS policies with
different contracts for requests’ response time.

response time when reference is changed from PAFS(97) to

PAFS(90). This is because the CPU frequency is already

reduced to its minimum and requests’ response time are

affected only by factors that PAFS does not influence, such

as disk accesses. For the same reason, when the application

is dominated by I/O, the policies do not significantly affect

the considered metrics. Finally, in this case, comparing

PAFS(100) and Ondemand, PAFS(100) exhibits a lower

response time and a 23.65% savings in energy consumed.

V. CONCLUSION

In this paper, we propose PAFS, an approach to generalize

task-level DFS policies by enabling a single policy to

be used with a user-defined productivity metric. PAFS is

based on productivity, which can be defined according to

user needs, and requires neither offline tuning nor prior

information on the system’s or applications’ workload.

Our evaluation aims at comparing PAFS with commonly

used system-level policies (Performance, Powersave, and

Ondemand), which are broadly used in today’s production

systems. We extensively evaluate PAFS considering different

web services profiles (I/O-intensive, CPU-intensive, and

hybrid), different productivity metrics (response time and

throughput) and four different QoS contracts.

Our results show that PAFS policy exhibits a consistently

better energy consumption values in comparison to the On-

demand system-level policy, reaching up to 23.65% energy

savings with no noticeable losses on the productivity metric.

This is a consequence of PAFS having an reactive behavior

instead of the preventive behavior found in Ondemand.

Ondemand’s preventive behavior will increase frequency

anytime any running application requires CPU. Reactive

behavior increases CPU frequency only after observing a

relation between frequency and productivity and only if this

increase in productivity is needed (as specified in the QoS

contract).

Our findings may be extended in various directions.

Among those, given the ability to define arbitrarily complex

197

metrics, we want to evaluate how helpful complex metrics

can be and how to help users defining them. Also, adaptive

control techniques could be used to dynamically define

the actuation interval (ΔT) and frequency steps (ΔF). A

more sophisticated control algorithm could bring additional

savings and increased robustness.

ACKNOWLEDGMENT

Authors would like to thank the financial support from

CNPq (grant 305858/2010-6) and CAPES. F. Brasileiro is a

CNPq researcher.

REFERENCES

[1] J. Balladini, R. Suppi, D. Rexachs, and E. Luque, “Impact of
parallel programming models and cpus clock frequency on
energy consumption of hpc systems,” in 9th IEEE/ACS Inter-
national Conference on Computer Systems and Application,
2011, pp. 16 –21.

[2] S. Albers, “Energy-efficient algorithms,” Communications of
the ACM, vol. 53, no. 5, pp. 86 – 96, 2010.

[3] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy, “Op-
timal power allocation in server farms,” in 11th international
joint conference on Measurement and modeling of computer
systems. New York, NY, USA: ACM, 2009, pp. 157–168.

[4] Intel Corporation, “Intel energy checker sdk,”
http://software.intel.com/en-us/articles/intel-energy-checker-
sdk/, Online June 2012.

[5] J. Jelschen, M. Gottschalk, M. Josefiok, C. Pitu, and A. Win-
ter, “Towards applying reengineering services to energy-
efficient applications,” in 16th European Conference on Soft-
ware Maintenance and Reengineering, 2012, pp. 353 –358.

[6] T. Wirtz and R. Ge, “Improving mapreduce energy efficiency
for computation intensive workloads,” International Green
Computing Conference and Workshops, vol. 0, pp. 1–8, 2011.

[7] Canonical Ltd, “Power management in ubuntu,”
https://wiki.ubuntu.com/power-management-in-Ubuntu,
Online June 2012.

[8] V. Pallipadi and A. Starikovskiy, “The ondemand governor:
past, present and future,” in Proceedings of Linux Symposium,
vol. 2, 2006, pp. 223 – 238.

[9] R. Ayoub, U. Ogras, E. Gorbatov, Y. Jin, T. Kam, P. Diefen-
baugh, and T. Rosing, “Os-level power minimization under
tight performance constraints in general purpose systems,” in
2011 International Symposium on Low Power Electronics and
Design, 2011, pp. 321 –326.

[10] G. Dhiman and T. Rosing, “System-level power management
using online learning,” IEEE Trans Comput-aided Des Integr
Circuits Syst, vol. 28, no. 5, pp. 676 –689, 2009.

[11] S. Luiz, A. Perkusich, A. Lima, J. Silva, and H. Almeida,
“System identification and energy-aware processor utilization
control,” IEEE Trans. Consum. Electron, vol. 58, no. 1, pp.
32 –37, 2012.

[12] C. Jiang, J. Wan, X. You, and Y. Zhao, “Power aware
job scheduling in multi-processor system with service level
agreements constraints,” JCP, vol. 5, no. 8, pp. 1193–1203,
2010.

[13] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware
provisioning of virtual machines for real-time cloud services,”
Concurrency Computat. Pract. Exper., vol. 23, no. 13, pp.
1491–1505, 2011.

[14] S. Albers, F. Müller, and S. Schmelzer, “Speed scaling on
parallel processors,” in 19th annual ACM symposium on
Parallel algorithms and architectures. New York, NY, USA:
ACM, 2007, pp. 289–298.

[15] V. Anagnostopoulou, M. Dimitrov, and K. Doshi, “Sla-guided
energy savings for enterprise servers,” in 2012 IEEE Interna-
tional Symposium on Performance Analysis of Systems and
Software, 2012, pp. 120 –121.

[16] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale:
elastic resource scaling for multi-tenant cloud systems,” in
2nd ACM Symposium on Cloud Computing. New York, NY,
USA: ACM, 2011, pp. 5:1–5:14.

[17] J. Wilkes, Utility Functions, Prices, and Negotiation. John
Wiley and Sons, Inc., 2009, pp. 67–88.

[18] Intel Corporation, “Enhanced intel speed-
step technology - how to document,”
http://www.intel.com/cd/channel/reseller/asmo-
na/eng/203838.htm, Online June 2012.

[19] Advanced Micro Devices (AMD), “Amd family 10h
desktop processor. power and thermal data sheet,”
2012, http://www.amd.com/us/products/technologies/cool-n-
quiet/Pages/cool-n-quiet.aspx, Online June 2012.

[20] ACPI, “Advanced configuration and power interface specifica-
tion,” 2012, http://www.acpi.info/spec.htm Online May 2012.

[21] C.-H. Hsu and U. Kremer, “The design, implementation, and
evaluation of a compiler algorithm for cpu energy reduction,”
SIGPLAN Not., vol. 38, no. 5, pp. 38–48, 2003.

[22] The Apache Software Foundation, “Apache benchmark tool,”
http://httpd.apache.org/ Online May 2012.

[23] R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti, “Energy ef-
ficiency in the future internet: A survey of existing approaches
and trends in energy-aware fixed network infrastructures,”
IEEE Communications Surveys Tutorials, vol. 13, no. 2, pp.
223 – 244, 2011.

[24] T. Kim, Y. Lee, and Y. Lee, “Energy measurement of web
service,” in 3rd International Conference on Future Energy
Systems, 2012, pp. 27:1–27:8.

[25] K. Le, O. Bilgir, R. Bianchini, M. Martonosi, and T. D.
Nguyen, “Managing the cost, energy consumption, and car-
bon footprint of internet services,” SIGMETRICS Perform.
Eval. Rev., vol. 38, no. 1, pp. 357–358, 2010.

[26] The Apache Software Foundation, “Apache http server,”
2012, http://httpd.apache.org/docs/2.0/programs/ab.html On-
line May 2012.

198

